RP2 クイックリファレンス

Raspberry Pi Pico

Raspberry Pi Pico 開発ボード (画像出所: Raspberry Pi 財団)。

以下は、Raspberry Pi RP2xxx ボードのためのクイックリファレンスです。このボードを初めて使う場合は、まず次のマイクロコントローラの概要を確認することを勧めます

MicroPython のインストール

チュートリアルの章: RP2xxx での MicroPython の始め方 を参照してください。そこにはトラブルシューティングについても記載されています。

ボードの一般的な制御

MicroPython REPL は USB シリアルポートで利用できます。タブ補完は、オブジェクトにどのようなメソッドがあるかを調べるのに便利です。貼り付けモード(ctrl-E)は、大きめの Pythonコードを REPL に貼り付けるのに便利です。

machine モジュール:

import machine

machine.freq()          # CPU の現在の周波数を取得
machine.freq(240000000) # CPU の周波数を 240 MHz に設定

rp2 モジュール:

import rp2

遅延とタイミング

time モジュールを使います:

import time

time.sleep(1)           # 1秒間、一時停止する
time.sleep_ms(500)      # 500ミリ秒間、一時停止する
time.sleep_us(10)       # 10マイクロ秒間、一時停止する
start = time.ticks_ms() # ミリ秒カウンター値を取得
delta = time.ticks_diff(time.ticks_ms(), start) # 時差を計算

タイマー

(どう使う?)

ピンと GPIO

machine.Pin クラスを使います:

from machine import Pin

p0 = Pin(0, Pin.OUT)    # GPIO 0 の出力ピンを作成
p0.on()                 # ピンを "on" (high) レベルに設定
p0.off()                # ピンを "off" (low) レベルに設定
p0.value(1)             # ピンを on/high に設定

p2 = Pin(2, Pin.IN)     # GPIO 2 の入力ピンを作成
print(p2.value())       # 値 0 または 1 を取得

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # 内部プルアップ抵抗を有効化
p5 = Pin(5, Pin.OUT, value=1) # 作成時にピンを high に設定

UART (シリアルバス)

machine.UART を参照

from machine import UART

uart1 = UART(1, baudrate=9600, tx=33, rx=32)
uart1.write('hello')  # 5バイト書き出す
uart1.read(5)         # 5バイトまで読み込む

PWM (パルス幅変調)

(RPi RP2xxx で PWM はどう使う?)

machine.PWM クラスを使います:

from machine import Pin, PWM

pwm0 = PWM(Pin(0))      # ピンから PWM オブジェクトを作成
pwm0.freq()             # 現在の周波数を取得
pwm0.freq(1000)         # 周波数を設定
pwm0.duty()             # 現在のデューティ比を取得
pwm0.duty(200)          # デューティ比を設定
pwm0.deinit()           # PWM を無効化

ADC (アナログ/デジタル変換)

(ADC モジュールはどう使う?)

machine.ADC クラスを使ってください:

from machine import ADC

adc = ADC(Pin(32))          # ADC ピンの ADC オブジェクトを作成
adc.read_u16()              # 0.0v - 3.3v 範囲を 0-65535 の値で読込み

ソフトウェア SPI バス

ソフトウェア SPI (ビットバンギング)はすべてのピンで動作し、 machine.SoftSPI クラスを介してアクセスします:

from machine import Pin, SoftSPI

# 与えたピンから SoftSPI バスを構築
# 極性 polarity は SCK のアイドル状態
# phase=0 は SCK の第1エッジでサンプルを意味、chase=1 は第2を意味
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))

spi.init(baudrate=200000) # ボーレートを設定

spi.read(10)            # MISO で 10 バイト読込み
spi.read(10, 0xff)      # 10 バイト読込み、その間 MOSI に 0xff を出力

buf = bytearray(50)     # バッファを作成
spi.readinto(buf)       # 与えたバッファに読込み(この場合は 50 バイト)
spi.readinto(buf, 0xff) # 与えたバッファに読込み、MOSI に 0xff を出力

spi.write(b'12345')     # MOSI に 5 バイト書込み

buf = bytearray(4)      # バッファを作成
spi.write_readinto(b'1234', buf) # MOSI に書き込み、MISO からバッファに読み込み
spi.write_readinto(buf, buf) # MOSI に buf を書き込み、MISO から buf に読み込み

警告

現在のところ、ソフトウェア SPI を初期化するときには sck, mosi, miso すべて を指定しなければなりません。

ハードウェア SPI バス

ハードウェア SPI には machine.SPI クラスを使ってアクセスします:

from machine import Pin, SPI

spi = SPI(1, 10000000)
spi = SPI(1, 10000000, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
spi = SPI(2, baudrate=80000000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18), mosi=Pin(23), miso=Pin(19))

ソフトウェア I2C バス

ソフトウェア I2C (ビット・バンギングを使用)は、出力可能なすべてのピンで動作し、 machine.SoftI2C クラスを使ってアクセスします。

from machine import Pin, SoftI2C

i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100000)

i2c.scan()              # デバイスをスキャン

i2c.readfrom(0x3a, 4)   # アドレス 0x3a のデバイスから 4 バイト読み込み
i2c.writeto(0x3a, '12') # アドレス 0x3a のデバイスに '12' を書き込み

buf = bytearray(10)     # 10バイトのバッファを作成
i2c.writeto(0x3a, buf)  # 与えたバッファをスレーブに書き込み

ハードウェア I2C バス

ハードウェア I2C には machine.I2C クラスを使ってアクセスしますこのクラスには先述のソフトウェア I2C と同じメソッドがあります:

from machine import Pin, I2C

i2c = I2C(0)
i2c = I2C(1, scl=Pin(5), sda=Pin(4), freq=400000)

リアルタイムクロック (RTC)

machine.RTC を参照:

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # 指定の日時を設定
rtc.datetime() # 日時を取得

WDT (ウォッチドッグタイマー)

(ウォッチドッグタイマーはある?)

machine.WDT を参照:

from machine import WDT

# WDT を有効化し、タイムアウトを 5s に設定(最低値は 1s)
wdt = WDT(timeout=5000)
wdt.feed()

ディープスリープモード

(rp2 でディープスリープはサポートされている?)

次のコードで、スリープ、起床、リセット原因のチェックが行えます:

import machine

# ディープスリープから起こされたかをチェック
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
    print('woke from a deep sleep')

# 10秒間のディープスリープに入る
machine.deepsleep(10000)

OneWire ドライバー

OneWire ドライバーはソフトウェアで実装され、すべてのピンで動作します:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # GPIO 12 で OneWire バスを作成
ow.scan()               # バス上のデバイスリストをスキャン
ow.reset()              # バスをリセット
ow.readbyte()           # 1バイト読込み
ow.writebyte(0x12)      # バスに1バイト書込み
ow.write('123')         # バスに複数バイト書込み
ow.select_rom(b'12345678') # ROM コードで指定したデバイスを選択

DS18S20 と DS18B20 デバイス用の特定のドライバーがあります:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:
    print(ds.read_temp(rom))

4.7k のプルアップ抵抗をデータラインに接続してください。convert_temp() メソッドは、温度をサンプリングするたびに呼び出す必要があることに注意してください。

NeoPixel/APA106 ドライバー

neopixelapa106 モジュールを使います(訳註: 両モジュールは rp2 ではまだサポートされていません):

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT)   # NeoPixel 駆動のための GPIO 0 を出力に設定
np = NeoPixel(pin, 8)   # 8ピクセル用の NeoPixel ドライバーを GPIO 0 で作成
np[0] = (255, 255, 255) # 第1ピクセルを白に設定
np.write()              # 全ピクセルにデータ書込み
r, g, b = np[0]         # 第1ピクセルの色を取得

APA106 ドライバーは NeoPixel を継承していますが、内部的には異なる色順を使っています:

from apa106 import APA106
ap = APA106(pin, 8)
r, g, b = ap[0]

APA102 (DotStar)はクロック端子が追加されているため、別のドライバーを使います。